An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order

Authors

  • Hossein Arab Faculty of Mathematical Sciences, Malayer University, P. O. Box 16846-13114, Malayer, Iran
  • Khosro Sayevand Faculty of Mathematical Sciences, Malayer University, P. O. Box 16846-13114, Malayer, Iran
Abstract:

In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

chebyshev cardinal functions: an effective tool for solving nonlinear volterra and fredholm integro-differential equations of fractional order

a computational method for numerical solution of a nonlinear volterra and fredholm integro-differentialequations of fractional order based on chebyshev cardinal functions is introduced. the chebyshev cardinaloperational matrix of fractional derivative is derived and used to transform the main equation to a system ofalgebraic equations. some examples are included to demonstrate the validity and ...

full text

Comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order

The work  addressed in this paper is a comparative study between convergence of the  acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method  and Adomian decomposition method for solving  differential equations of integer and fractional orders.

full text

An Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients

Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...

full text

Chebyshev cardinal functions for solving volterra-fredholm integro- differential equations using operational matrices

In this paper, an effective direct method to determine the numerical solution of linear and nonlinear Fredholm and Volterra integral and integro-differential equations is proposed. The method is based on expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are des...

full text

HYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 3

pages  339- 352

publication date 2018-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023